Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 492(7427): 138-42, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23172143

RESUMO

The iridoids comprise a large family of distinctive bicyclic monoterpenes that possess a wide range of pharmacological activities, including anticancer, anti-inflammatory, antifungal and antibacterial activities. Additionally, certain iridoids are used as sex pheromones in agriculturally important species of aphids, a fact that has underpinned innovative and integrated pest management strategies. To harness the biotechnological potential of this natural product class, the enzymes involved in the biosynthetic pathway must be elucidated. Here we report the discovery of iridoid synthase, a plant-derived enzyme that generates the iridoid ring scaffold, as evidenced by biochemical assays, gene silencing, co-expression analysis and localization studies. In contrast to all known monoterpene cyclases, which use geranyl diphosphate as substrate and invoke a cationic intermediate, iridoid synthase uses the linear monoterpene 10-oxogeranial as substrate and probably couples an initial NAD(P)H-dependent reduction step with a subsequent cyclization step via a Diels-Alder cycloaddition or a Michael addition. Our results illustrate how a short-chain reductase was recruited as cyclase for the production of iridoids in medicinal plants. Furthermore, we highlight the prospects of using unrelated reductases to generate artificial cyclic scaffolds. Beyond the recognition of an alternative biochemical mechanism for the biosynthesis of cyclic terpenes, we anticipate that our work will enable the large-scale heterologous production of iridoids in plants and microorganisms for agricultural and pharmaceutical applications.


Assuntos
Biocatálise , Catharanthus/enzimologia , Iridoides/química , Iridoides/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Ciclização , Reação de Cicloadição , Dados de Sequência Molecular , Monoterpenos/metabolismo , NADP/metabolismo , Oxirredutases/metabolismo , Extratos Vegetais/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Medicinais/enzimologia , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Especificidade por Substrato
2.
PLoS One ; 7(12): e52506, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300689

RESUMO

The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for understanding plant specialized metabolism, and promotes realization of innovative production systems for plant-derived pharmaceuticals.


Assuntos
Perfilação da Expressão Gênica , Magnoliopsida/genética , Magnoliopsida/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Sequência Conservada , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico
3.
J Am Chem Soc ; 133(48): 19346-9, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22050348

RESUMO

Installing halogens onto natural products can generate compounds with novel or improved properties. Notably, enzymatic halogenation is now possible as a result of the discovery of several classes of halogenases; however, applications are limited because of the narrow substrate specificity of these enzymes. Here we demonstrate that the flavin-dependent halogenase RebH can be engineered to install chlorine preferentially onto tryptamine rather than the native substrate tryptophan. Tryptamine is a direct precursor to many alkaloid natural products, including approximately 3000 monoterpene indole alkaloids. To validate the function of this engineered enzyme in vivo, we transformed the tryptamine-specific RebH mutant (Y455W) into the alkaloid-producing plant Madagascar periwinkle ( Catharanthus roseus ) and observed the de novo production of the halogenated alkaloid 12-chloro-19,20-dihydroakuammicine. While wild-type (WT) RebH has been integrated into periwinkle metabolism previously, the resulting tissue cultures accumulated substantial levels of 7-chlorotryptophan. Tryptophan decarboxylase, the enzyme that converts tryptophan to tryptamine, accepts 7-chlorotryptophan at only 3% of the efficiency of the native substrate tryptophan, thereby creating a bottleneck. The RebH Y455W mutant circumvents this bottleneck by installing chlorine onto tryptamine, a downstream substrate. In comparison with cultures harboring RebH and WT RebF, tissue cultures containing mutant RebH Y455W and RebF also accumulate microgram per gram fresh-weight quantities of 12-chloro-19,20-dihydroakuammicine but, in contrast, do not accumulate 7-chlorotryptophan, demonstrating the selectivity and potential utility of this mutant in metabolic engineering applications.


Assuntos
Alcaloides/metabolismo , Catharanthus/enzimologia , Oxirredutases/genética , Oxirredutases/metabolismo , Engenharia de Proteínas , Triptaminas/metabolismo , Triptofano/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Halogenação , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Engenharia Metabólica , Mutação , Triptofano/análogos & derivados
4.
J Biol Chem ; 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19759025

RESUMO

This article was withdrawn by the authors before final publication on October 1, 2009.

5.
Biotechnol Prog ; 23(5): 1180-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17725365

RESUMO

In developing and developed nations, plant cell culture systems are used to supply desirable compounds in lieu of chemical synthesis or natural extraction. When plant cell culture systems are unable to meet commercial demand, metabolic engineering offers a method to increase yields. However, to benefit from metabolic engineering approaches, effective transient transformation methods are required to rapidly identify and characterize key regulatory genes before intensive, time-consuming stable transformation efforts can proceed. This paper describes a particle bombardment-mediated transient transformation system for Taxus spp. in cell culture. Optimal parameters were established for the T. cuspidata cell line P991 and the T. canadensis cell line CO93D, resulting in reliable, efficient, transient expression of the firefly luciferase gene under control of the constitutive CaMV 35S promoter. Multiple bombardments and larger gold microcarriers (1.6 vs 1.0 microm in diameter) were particularly effective in increasing luciferase activity and in reducing variation among replicates. This particle bombardment-mediated transformation system was also shown to be capable of transiently expressing the DsRed and beta-glucuronidase reporter genes under the control of the maize ubiquitin and CaMV 35S promoters, respectively. With the ability to transiently transform Taxus spp. cell cultures using a variety of promoters and reporters, characterization of genes related to paclitaxel accumulation in culture can now proceed.


Assuntos
Microinjeções/métodos , Plasmídeos/administração & dosagem , Plasmídeos/genética , Proteínas Recombinantes/biossíntese , Taxus/fisiologia , Transfecção/métodos , Células Cultivadas , Tamanho da Partícula , Plasmídeos/farmacocinética
6.
Metab Eng ; 8(5): 385-94, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16793302

RESUMO

Taxus plant suspension cell cultures provide a sustainable source of paclitaxel (Taxol) for the treatment of many cancers. To develop an optimal bioprocess for paclitaxel supply, taxane biosynthetic pathway regulation must be better understood. Here we examine the expression profile of paclitaxel biosynthetic pathway genes by RNA gel blot analysis and RT-PCR in the Taxus cuspidata cell line P991 and compare with taxane metabolite levels. Upon methyl jasmonate (MJ) elicitation (100 microM), paclitaxel accumulates to 3.3 mg/L and cephalomannine to 2.2 mg/L 7 days after elicitation but neither are observed before this time. 10-deacetylbaccatin III accumulates to 3.3 mg/L and baccatin III to 1.2 mg/L by day 7 after elicitation. The early pathway enzyme genes GGPPS, TASY, and T5alphaH are up-regulated by MJ elicitation within 6 h and continue through 24 h before their abundances decrease. This study reveals the preference for one side of the biosynthetic pathway branch in early taxane synthesis, where transcripts coding for TalphaH are abundant after elicitation with MJ but transcripts encoding the two enzymes for the alternative branch (TDAT and T10betaH) are not highly expressed following elicitation. Transcripts encoding the enzymes DBBT and DBAT are up-regulated upon MJ elicitation. Their products, 10-deacetylbaccatin III and baccatin III, respectively, accumulate within 6 h of the initial increase in transcript abundance. Importantly, the steady-state levels of the two terminal enzyme transcripts (BAPT and DBTNBT) are much lower than transcripts of early pathway steps. These are potential steps in the pathway for targeted metabolic engineering to increase accumulation of paclitaxel in suspension cell culture.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Engenharia Genética/métodos , Paclitaxel/biossíntese , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...